Role of Ca2+ channels in short-term synaptic plasticity
Jianhua Xu, Liming He and Ling-Gang Wu

Repetitive nerve activity induces various forms of short-term synaptic plasticity that have important computational roles in neuronal networks. Several forms of short-term plasticity are caused largely by changes in transmitter release, but the mechanisms that underlie these changes in the release process have been difficult to address. Recent studies of a giant synapse — the calyx of Held — have shed new light on this issue. Recordings of Ca2+ currents or Ca2+ concentrations at nerve terminals reveal that regulation of presynaptic Ca2+ channels has a significant role in three important forms of short-term plasticity: short-term depression, facilitation and post-tetanic potentiation.

Addresses
National Institute of Neurological Disorders and Stroke, Bethesda, MD 20892, USA

Corresponding author: Wu, Ling-Gang (wul@ninds.nih.gov)

Current Opinion in Neurobiology 2007, 17:352–359
This review comes from a themed issue on Signalling mechanisms
Edited by Stuart Cull-Candy and Ruediger Klein
Available online 26th April 2007
0959-4388/$ – see front matter
Published by Elsevier Ltd.
DOI 10.1016/j.conb.2007.04.005

Introduction
Neurons fire repetitively at frequencies that range from less than one to hundreds of hertz for various periods of time [1,2]. Repetitive firing can temporarily change synaptic strength, resulting in various forms of short-term plasticity, such as facilitation (which lasts for less than a few seconds), depression (which lasts for a few to tens of seconds) and post-tetanic potentiation (which can last for minutes). These forms of short-term plasticity are crucial for neuronal network computations [3]. Therefore, it is important to understand how short-term plasticity is generated.

Accumulated evidence suggests that the origin of short-term plasticity is largely presynaptic, although postsynaptic mechanisms are involved in certain conditions [4–6]. It remains not well understood how transmitter release is regulated to achieve short-term plasticity. Although transmitter release is triggered by Ca2+ influx through voltage-gated Ca2+ channels, regulation of Ca2+ channels has not generally been considered as a major mechanism in short-term plasticity. Recent studies at a large mammalian central synapse, the calyx of Held in the rat (or mouse) medial nucleus of the trapezoid body, indicate that regulation of voltage-gated Ca2+ channels is important in mediating short-term plasticity. This review focuses on these studies of the calyx of Held synapse.

The relationship between transmitter release and the presynaptic Ca2+ current
When an action potential arrives at the nerve terminal, voltage-activated Ca2+ channels open to allow Ca2+ influx that triggers transmitter release. About four decades ago, transmitter release at the neuromuscular junction was found to be proportional to the extracellular Ca2+ concentration raised to power of three or four [7,8]. A similar power relationship was subsequently observed between transmitter release and the presynaptic Ca2+ current (I\textsubscript{Ca}) or the presynaptic intracellular Ca2+ concentration at many synapses, such as the squid giant synapse [9], hippocampal CA3–CA1 synapses [10], the goldfish retinal bipolar synapse [11] and the calyx of Held synapse (Figure 1a) [12–15,16**]. According to this nonlinear (e.g., fourth power) relationship, a small change in the Ca2+ influx (e.g., 90% of control) is amplified to a large change in transmitter release (e.g., 66%). Thus, modulation of Ca2+ influx or Ca2+ channels provides an efficient and economic way to modulate transmitter release. Ca2+ channels can be regulated by various factors, such as voltage, Ca2+ and various neurotransmitters and neuro-modulators [17–19]. However, regulation of Ca2+ channels had not been considered the dominant mechanism mediating short-term plasticity. Ca2+ currents are difficult to record at most synapses, where nerve terminals are too small for voltage-clamp recordings. The ability to perform simultaneous presynaptic and postsynaptic voltage-clamp recordings at the calyx of Held synapse [20,21] made it possible to study quantitatively the contribution of Ca2+ channels to short-term plasticity at this synapse.

The calyx of Held synapse is a glutamatergic synapse located in the auditory brainstem of the rat or mouse [5]. In rats aged ten days old or younger, the calyx of Held contains three types of voltage-gated Ca2+ channel — P/Q-type, N-type and R-type — whereas older calyces contain only P/Q-type channels [13,22–24]. In mouse, P/Q-type and N-type channels are present in immature calyces, but only P/Q-type channels are present in more mature calyces [25,26*]. P/Q-type channels are more efficient than N-type and R-type channels in controlling transmitter release, probably because they are physically located closer to the release site than other types [13]. Similarly, P/Q-type channels are more efficient in controlling release than...
N-type and/or R-type channels at cerebellar synapses [27] and neuromuscular junctions [28,29]. It is suggested that as the calyx matures during development, there is a reduction in the number of Ca$^{2+}$ channels that control transmitter release at single release sites [30]. The physical distance between Ca$^{2+}$ channels and the release site or the endogenous Ca$^{2+}$ buffer capacity also decreases, which increases the efficiency of Ca$^{2+}$ channels in controlling release [30]. Thus, developmental changes and the types of Ca$^{2+}$ channel can affect the efficiency of Ca$^{2+}$ channels in regulating transmitter release.

Short-term depression

Repetitive stimulation causes short-term depression (STD) of synaptic transmission at many synapses [1,4,5]. At the calyx of Held synapse, STD is more prominent in immature than in mature animals [31], so the majority of studies have been performed in immature calyces (Figure 1b). STD during repetitive firing at ≤10 Hz is caused by a presynaptic mechanism [32]. As the frequency of firing is increased, postsynaptic AMPA receptor desensitization [33,34] also contributes to STD [35,36]; however, significant depression remains after relieving postsynaptic receptor desensitization, indicating that the presynaptic mechanism is a dominant source of STD [35,36].

What is the presynaptic mechanism that underlies STD? Depletion of a readily releasable pool of vesicles (RRP) is the most popular hypothesis [4], and this hypothesis has been confirmed at the calyx after a 10 ms presynaptic depolarization that depletes the RRP [37–39]. However, depletion of the RRP is not the only mechanism that...
underlies STD after a 10 ms presynaptic depolarization. A decrease in the release probability downstream of the presynaptic \(I_{\text{Ca}} \) and a decrease in presynaptic \(I_{\text{Ca}} \) itself also contribute to STD after a 10 ms depolarization [37]. Which of these presynaptic mechanisms mediate STD induced by action potential trains? Recent studies indicate that although all of these mechanisms can contribute to STD [16**,38,40,41], a decrease in the presynaptic \(I_{\text{Ca}} \) is the dominant mechanism during repetitive action-potential-like stimulation at frequencies ranging from <2 Hz to 30 Hz in 7–10-day-old rats [16**].

Inactivation of the presynaptic \(I_{\text{Ca}} \) was first found after a prolonged (e.g. 10 s) train of action potentials at 100 Hz [40]. The decrease in the \(I_{\text{Ca}} \) largely accounts for STD after the prolonged train of stimulation. However, this mechanism was discounted, because an atypically intense stimulus was used to generate it, and STD during 100 Hz stimulation was not caused by \(I_{\text{Ca}} \) inactivation [40]. A recent study has shown inactivation of \(I_{\text{Ca}} \) for a wide range of stimulation conditions that are typically used to induce STD [16**]. The stimulus includes 2–20 action-potential-equivalent stimuli (AP-e) at 0.2–100 Hz. Except during 100 Hz stimulation, \(I_{\text{Ca}} \) is decreased during and after stimulation. Because release is proportional to \(I_{\text{Ca}} \) raised to a power of 3.6 (Figure 1a), the decreased \(I_{\text{Ca}} \) raised to a power of 3.6 gives an estimate of the contribution of \(I_{\text{Ca}} \) inactivation to STD (Figure 1b). The estimated contribution matches closely to the measured STD during and after trains of AP-e, particularly ≤30 Hz (Figure 1b). Furthermore, STD, including paired-pulse depression, is largely relieved when the \(I_{\text{Ca}} \) decrease is compensated by a change in the voltage command [16**] or when \(I_{\text{Ca}} \) is replaced with photolysis of a caged Ca\(^{2+}\) compound that evokes release without activating Ca\(^{2+}\) channels [42]. These results suggest that \(I_{\text{Ca}} \) decrease, but not depletion of the RRP, is the major cause of STD during 2–20 AP-e at ≤30 Hz and after 2–20 AP-e at frequencies from <2 Hz to 100 Hz.

\(I_{\text{Ca}} \) inactivation is mainly due to inactivation of P/Q-type Ca\(^{2+}\) channels [16**,40]. The decrease of \(I_{\text{Ca}} \) during stimulation is largely relieved by the Ca\(^{2+}\) buffer bis-(o-aminophenoxy)-ethane-N,N,N\(^\prime\),N\(^\prime\)-tetraacetic acid (BAPTA; Figure 1c) or by replacing the extracellular Ca\(^{2+}\) with Ba\(^{2+}\) or Na\(^{+}\), suggesting that Ca\(^{2+}\) induces \(I_{\text{Ca}} \) inactivation [16**,40]. Calmodulin, a Ca\(^{2+}\)-binding protein, might mediate Ca\(^{2+}\)-induced \(I_{\text{Ca}} \) inactivation, because three calmodulin inhibitors — including a 17 amino acid myosin light chain kinase peptide (Figure 1c), a calmodulin-binding domain peptide and an organic calmodulin inhibitor calmidazolium — significantly reduce \(I_{\text{Ca}} \) inactivation [16**].

Why is depletion of the RRP not the major mechanism during 2–20 AP-e at ≤30 Hz? This is because each AP-e depletes only ~5% of the RRP [16**] and, even after a complete depletion, more than half of the RRP is replenished within ~200–300 ms [16**,37,38]. Only during AP-e trains at ≥100 Hz is depletion the dominant mechanism [16**]. In addition, during prolonged high-frequency (≥100 Hz) firing, activation of presynaptic adenosine A1 receptors and group III metabotropic glutamate receptors can contribute to STD [43,44] by inhibition of \(I_{\text{Ca}} \) [22,45].

Short-term facilitation

Short-term synaptic facilitation (STF) is generally thought to be caused by an elevated intracellular Ca\(^{2+}\) concentration that remains from the previous stimulus, termed residual Ca\(^{2+}\) [4,46,47]. The main evidence for this is the ability of Ca\(^{2+}\) chelators to attenuate both residual Ca\(^{2+}\) and STF [4]. It is hypothesized that residual Ca\(^{2+}\) enhances the release probability by binding to a Ca\(^{2+}\) sensor different from the one that mediates evoked exocytosis [4].

At the calyx of Held, STF is not observed in normal extracellular solution because STD is overwhelming [5]. However, during repetitive action-potential-like depolarizing pulses at 100–200 Hz, \(I_{\text{Ca}} \) is facilitated by a maximum of 10–20% (Figure 2a), owing to an increased rate of activation [48,49]. In this situation, only P/Q-type Ca\(^{2+}\) channels are facilitated [25,26*]. Facilitation of \(I_{\text{Ca}} \) is attenuated by loading the calyx with Ca\(^{2+}\) chelators or by replacing the extracellular Ca\(^{2+}\) with Ba\(^{2+}\) (Figure 2a), suggesting that residual Ca\(^{2+}\) mediates \(I_{\text{Ca}} \) facilitation [48,49]. Loading the calyx with neuronal Ca\(^{2+}\) sensor 1 (NCS1), a neuron-specific high-affinity Ca\(^{2+}\)-binding protein, increases \(I_{\text{Ca}} \) induced by a brief depolarization by accelerating the activation time of \(I_{\text{Ca}} \) in a Ca\(^{2+}\)-dependent manner, and largely occludes \(I_{\text{Ca}} \) facilitation (Figure 2b) [50]. Furthermore, loading the calyx with a C-terminal peptide of NCS1 greatly reduces \(I_{\text{Ca}} \) facilitation [50]. These results suggest that Ca\(^{2+}\) facilitates \(I_{\text{Ca}} \) by binding to NCS1 [50].

Given that STD overwhelms STF at the calyx-type synapse in normal extracellular solution, the role of \(I_{\text{Ca}} \) facilitation might be to counteract mechanisms that cause STD. When postsynaptic AMPA receptor desensitization is relieved by application of competitive AMPA receptor blockers such as kynurenate acid or γ-D-glutamylglycine (γ-DGG), the excitatory postsynaptic current (EPSC) is initially facilitated during a train of action potentials or action-potential-like depolarizing pulses at 50–100 Hz [16**,35,51]. The facilitated EPSCs during the first four stimuli are of approximately the same size as the EPSC predicted from \(I_{\text{Ca}} \) facilitation (raising the facilitated \(I_{\text{Ca}} \) to a power of 3.6; Figure 2c), suggesting that \(I_{\text{Ca}} \) facilitation contributes significantly to STF [16**]. In mice that have P/Q-type Ca\(^{2+}\) channels knocked out, both \(I_{\text{Ca}} \) facilitation and the EPSC facilitation are absent (Figure 2d) [25,26*]. This correlation provides strong
evidence that I_{Ca} facilitation is a major source of STF [25,26*].

However, not all studies agree quantitatively with this conclusion. In one study [51], the EPSC was facilitated to ~220% of control, whereas I_{Ca} was facilitated to only ~110% of control during paired-pulse stimulation (Figure 2e) [51]. I_{Ca} facilitation could account for only about one-third of paired-pulse facilitation [51]. A supra-linear summation of residual Ca$^{2+}$ with the Ca$^{2+}$ influx, probably caused by saturation of the Ca$^{2+}$ buffer, was considered to be the major mechanism underlying paired-pulse facilitation [51]. This conclusion is consistent with a study of the mossy fiber–CA3 synapse [52], in which saturation of an endogenous Ca$^{2+}$ buffer (calbindin) in the nerve terminal contributed to STF. However, the ~120% increase in paired-pulse facilitation of the EPSC reported in [51] is much larger than the ~0–40% increases reported in other studies (e.g. [16**,35], and a report of no apparent change [36] from the same laboratory as [51]). The reason for this apparent discrepancy is unclear. It seems likely that the contribution of I_{Ca} facilitation to STF varies depending on the degree of STF, and thus the condition of the synapse. Nevertheless, all studies agree that I_{Ca} facilitation contributes to STF.

At other synapses, the block of STF by Ca$^{2+}$ chelators such as glycol-bis(2-aminoethylether)-N,N,N′,N′-tetraacetic

Figure 2

I_{Ca} facilitation induced by Ca$^{2+}$ and neuronal Ca$^{2+}$ sensor 1 (NCS1) significantly contributes to short-term facilitation. (a) The I_{Ca} facilitation (lower) induced by a train of action potential waveforms (upper) at 100 Hz in control conditions (i) was largely abolished when the calyx was loaded with 10 mM BAPTA (ii). Adapted, with permission, from [48]. (b) Superimposed I_{Ca} traces evoked by paired pulses at different intervals from a calyx in control conditions (i) and a calyx loaded with exogenous NCS1 (20 μM; ii). Note that NCS1 largely occludes I_{Ca} facilitation. Adapted, with permission, from [50]. (c) (i) Sampled I_{Ca} and EPSC induced by a train of AP-e at 100 Hz. (ii) I_{Ca} charge (open circles) and EPSC amplitude (black triangles) during a train of AP-e at 100 Hz (n = 13). Only the first eight stimuli are shown. The measured I_{Ca} charge was also raised to a power of 3.6 (red). Kynurenic acid (1 mM) and cyclothiazide (100 μM) were added in the bath solution. The error bars indicate standard error of the mean. Adapted, with permission, from [16**]. (d) (i) Superimposed I_{Ca} traces recorded from mouse calyces by paired 2 ms depolarizing pulses with intervals of 5–45 ms. I_{Ca} facilitation was observed in the wild-type mouse (WT) but not in a P/Q-type channel knockout mouse (KO). (ii) Paired-pulse facilitation of the EPSC was observed in the wild-type but not in the P/Q-type knockout mouse, suggesting that I_{Ca} facilitation causes paired-pulse facilitation. Adapted, with permission, from [25]. (e) Superimposed samples of presynaptic I_{Ca} and EPSC evoked by paired pulses with various intervals (Δt) at a calyx of Held synapse. The bath solution contained cyclothiazide to relieve AMPA receptor desensitization. The results in this study suggest that I_{Ca} facilitation is insufficient to fully account for paired-pulse facilitation. Adapted, with permission, from [51].
acid (EGTA) is often interpreted as activation of a Ca2+ sensor that enhances the release probability \cite{4,46}. The findings at the calyx of Held provide an alternative explanation: that Ca2+ chelators attenuate STF by diminishing Ca2+-induced \(I_{\text{Ca}}\) inactivation. In addition, Ca2+ chelators might block STF by minimizing saturation of Ca2+ buffers in the nerve terminal \cite{51,52}.

Post-tetanic potentiation

Post-tetanic potentiation (PTP) is also caused by residual Ca2+ at the nerve terminal \cite{4,46}. It is hypothesized that residual Ca2+ enhances the release probability by acting on a molecular target different from the Ca2+ sensor that mediates evoked exocytosis \cite{4}. At the calyx of Held, PTP can be induced by intense afferent fiber stimulation, such as 4 s stimulation at 100 Hz (Figure 3a) \cite{53*} or 5 min stimulation at 20 Hz \cite{54*}. Similar to other synapses \cite{4}, at the calyx of Held the Ca2+ chelator EGTA attenuates the increase of residual Ca2+ and thus PTP (Figure 3a) \cite{53*,54*}. Knowing that residual Ca2+ can facilitate \(I_{\text{Ca}}\) in the calyx (Figure 2), it is natural to ask whether EGTA attenuates PTP by blocking Ca2+-induced \(I_{\text{Ca}}\) facilitation. To address this question, \(I_{\text{Ca}}\) was recorded from the calyx in the whole-cell configuration; however, in this configuration PTP was absent, probably owing to washout of molecules that mediate PTP \cite{53*,54*}. Thus, instead of whole-cell recordings of \(I_{\text{Ca}}\), fluorescent Ca2+ indicator dyes were loaded into the calyx via a whole-cell patch pipette for a few minutes, followed by pipette removal to maintain PTP \cite{55**}. The Ca2+ influx in the calyx evoked by a single action potential was found to increase by \(\sim 15\%\) at the peak of the PTP (Figure 3b). This increase gradually returned to the baseline with a time course similar to that of PTP. Based on the highly non-linear relationship between the EPSC and the presynaptic Ca2+ influx, the increase in the presynaptic Ca2+ influx largely accounts for the PTP \cite{55**}. The increased Ca2+ influx was probably caused by Ca2+-induced \(I_{\text{Ca}}\) facilitation \cite{55**}; however, action potential broadening could not be ruled out. In addition, an increase in the RRP size might contribute up to 30\% of the PTP induced by 5 min stimulation at 20 Hz \cite{55**}, although this phenomenon is not observed when PTP is induced by 4 s stimulation at 100 Hz \cite{53*}.

Conclusions and future directions

Regulation of presynaptic Ca2+ channels is traditionally not considered a major mechanism underlying synaptic plasticity. Recent studies at the giant calyx of Held synapse reveal that regulation of Ca2+ channels, particularly those of the P/Q-type, in nerve terminals contributes significantly to STD and STF. During STD, \(I_{\text{Ca}}\) is inactivated by a Ca2+-calmodulin-mediated pathway, whereas during STF, \(I_{\text{Ca}}\) is facilitated by Ca2+ that binds to NCS1. A Ca2+-induced increase of Ca2+ influx, possibly via facilitation of \(I_{\text{Ca}}\), also contributes significantly to the generation of PTP. These findings suggest that Ca2+-induced regulation of presynaptic Ca2+ channels is a common mechanism to generate short-term plasticity at the calyx of Held synapse.

It is generally thought that STF and PTP are caused by residual Ca2+, which enhances the release probability by binding to a Ca2+ sensor different from the one that mediates evoked release, whereas STD is largely caused by depletion of the RRP. The finding of Ca2+-induced \(I_{\text{Ca}}\) facilitation at the calyx provides an additional mechanism by which residual Ca2+ can enhance the release probability during STF. The finding of Ca2+-induced \(I_{\text{Ca}}\) inactivation at the calyx provides another major mechanism by which STD can be achieved. It is therefore important to determine whether the findings at the calyx

Figure 3

A Ca2+-induced increase in presynaptic Ca2+ influx contributes significantly to the generation of post-tetanic potentiation (PTP). (a) Afferent fiber stimulation (applied at time 0) at 100 Hz for 1 s (gray) or 4 s (black) induced PTP of the EPSC in control conditions (i) but not after application of the membrane-permeant Ca2+ chelator EGTA-AM (ii). Adapted, with permission, from \cite{55*}. (b) The presynaptic Ca2+ transients (i) and the EPSCs (ii) evoked by an action potential before PTP (black) and during PTP (gray). PTP was induced by 20 min fiber stimulation at 20 Hz. Each trace is an average of ten individual traces. The calyx was preloaded with 200 \(\mu\text{M Fluo-4, a fluorescent Ca}^{2+}\) indicator. Fluorescence transients [%] are shown as the fluorescence increase (\(\Delta F_{\text{FAP}}\)) divided by the basal fluorescence level (\(F_0\)). Adapted, with permission, from \cite{55**}.
of Held apply to other synapses. In addition, we think it is important to address the following three questions at the calyx of Held in the near future. First, why does Ca2+ induce I_{Ca} facilitation during STF, but I_{Ca} inactivation during STD? Is the choice between upregulation or downregulation of I_{Ca} a balanced output of two separate Ca2+-dependent pathways? Second, given that calmodulin can mediate Ca2+-induced I_{Ca} facilitation and inactivation [56,57], why is I_{Ca} inactivation but not facilitation mediated by calmodulin at the calyx of Held? Third, is the increase of the presynaptic I_{Ca} influx during PTP mediated by Ca2+-induced I_{Ca} facilitation?

Update

In addition to I_{Ca} inactivation and depletion of the RRP, a decrease in the release probability, caused by a mechanism independent of I_{Ca} inactivation, contributes to STD induced by prolonged depolarization [37], and probably contributes to STD during high-frequency trains of action-potential-like stimulation [16**,41]. Two recent studies shed light on how the decrease in the release probability is achieved at the calyx of Held [58,59]. One suggests that after depletion of the RRP, newly recruited vesicles are likely to be at a site further away from the Ca2+ channel cluster [58]; the other study suggests that the stimulation-induced increase of the intracellular Ca2+ concentration decreases the sensitivity of readily releasable vesicles to Ca2+ [59].

As discussed in the main text, two studies do not agree on whether an increase in the RRP size contributes to PTP at the calyx of Held [53**,55**]. This controversy is resolved by a recent study, which shows a significant increase of the RRP size >60 s, but not 20 s, after a train of action potential stimulation at 100 Hz for 4 s [60]. Thus, the lack of an increase in the RRP size, as previously reported at 20 s after 4 s stimulation at 100 Hz [53*], is due to measurement of the RRP size at an earlier time. Furthermore, the new study suggests that at physiological temperatures, the increase in the RRP size lasts longer than the increase in the release probability (which is caused by an increase of the Ca2+ influx), and is a more significant mechanism underlying PTP [60].

Acknowledgement

We thank Mr Benjamin McNeil and Dr David Nees for the comments on the manuscript. This work was supported by the National Institute of Neurological Disorders and Stroke Intramural Research Program.

References and recommended reading

Papers of particular interest, published within the period of review, have been highlighted as:

- of special interest
- of outstanding interest

the presynaptic Ca\(^{2+}\) currents were absent in P/Q-type knockout mice, the calyx of Held synapse in wild-type mice and in P/Q-type channel

26. Ishikawa T, Kaneko M, Shin HS, Takahashi T: Presynaptic N-type and P/Q-type Ca\(^{2+}\) channels mediating synaptic transmission at the calyx of Held of mice. J Physiol 2005, 568:199-209. The results regarding Ca\(^{2+}\) current facilitation are similar to those in [25] but published one year later. The functional significance of N-type and P/Q-type Ca\(^{2+}\) channels in controlling transmitter release were compared at the calyx of Held synapse in wild-type mice and in P/Q-type channel knockout mice. Both short-term facilitation of the EPSC and facilitation of the presynaptic Ca\(^{2+}\) currents were absent in P/Q-type knockout mice, suggesting a significant contribution of P/Q-type Ca\(^{2+}\) channels in short-term facilitation.

42. Bollmann JH, Sakmann B: Control of synaptic strength and timing by the release-site Ca\(^{2+}\) signal. Nat Neurosci 2005, 8:426-434.

53. Korogod N, Lou X, Schneggenburger R: Presynaptic Ca\(^{2+}\) requirements and developmental regulation of posttetanic potentiation at the calyx of Held. J Neurosci 2003, 25:5127-5137. This study shows that brief trains of 100 Hz fiber stimulation induced posttetanic potentiation (PTP) of transmitter release at the calyx of Held that lasted for 5 min. PTP was more prominent in immature rats than in mature rats. Both application of the membrane-permeable Ca\(^{2+}\) chelator EGTA-AM suppressed PTP. Presynaptic Ca\(^{2+}\) imaging showed that the intracellular Ca\(^{2+}\) concentration was increased by 40-120 nM at the peak of PTP, and this ‘residual’ Ca\(^{2+}\) decayed in parallel with PTP. These results suggest that residual Ca\(^{2+}\) in the nerve terminal is responsible for the generation of PTP. The readily releasable pool size did not change during PTP, suggesting that PTP is caused by an increased release probability.

54. Habets RL, Borst JG: Post-tetanic potentiation in the rat calyx of Held synapse. J Physiol 2005, 564:173-187. This study and [53] were the first to report PTP at the calyx of Held synapse. The amplitude of the EPSC was increased more than twofold by a 5 min 20 Hz fiber stimulation, and it returned to the control value within a few minutes. Such PTP was accompanied by a clear increase in the frequency, but not in the amplitude, of spontaneous EPSCs. The size of the readily releasable pool of vesicles was increased by ~30%; PTP was accompanied by an increase in the presynaptic Ca\(^{2+}\) concentration to ~210 nM, and the decay of the PTP matched the decay of this increase. When the decay of the Ca\(^{2+}\) transient was shortened by dialysing the terminal with EGTA, the PTP decay sped up in parallel. These results suggest that PTP is mostly due to an increase of residual Ca\(^{2+}\) that enhances the release probability.

55. Habets RL, Borst JG: An increase in calcium influx contributes to post-tetanic potentiation at the rat calyx of Held synapse. J Neurophysiol 2006, 96:2868-2876. The authors improved the imaging resolution of the Ca\(^{2+}\) signal evoked by an action potential in the calyx of Held. This enabled them to identify an ~15% increase in the presynaptic Ca\(^{2+}\) transient during PTP. The increase of the presynaptic Ca\(^{2+}\) transient largely accounts for PTP of...
the EPSC, suggesting that PTP is caused mainly by an increase in presynaptic Ca\(^{2+}\) influx.

